Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

### Bis{ $\mu$ -2-[(N,N-diisopropylcarbamothioyl)sulfanyl]acetato- $\kappa^2 O$ :O'}bis(bis(4chlorobenzyl){2-[(N,N-diisopropylcarbamothioyl)sulfanyl]acetato- $\kappa^2 O$ ,O'}tin(IV))

#### Thy Chun Keng, Kong Mun Lo and Seik Weng Ng\*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 20 April 2011; accepted 26 April 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.024; wR factor = 0.083; data-to-parameter ratio = 20.9.

The dinuclear title complex,  $[Sn_2(C_7H_6Cl)_4(C_9H_{16}NO_2S_2)_4]$ , lies on a center of inversion. The Sn<sup>IV</sup> atoms are chelated by one of the two carboxylate ions; the other carboxylate ion bridges two metal atoms. The geometry of the six-coordinate Sn<sup>IV</sup> atom is a distorted *trans*-C<sub>2</sub>SnO<sub>4</sub> octahedron  $[C-Sn-C = 155.32 (8)^{\circ}]$ .

#### **Related literature**

For the direct synthesis of the organotin chloride reactant, see: Sisido *et al.* (1961). For the synthesis of the carboxylic acid, see: Nachmias (1952). For a review of the crystal structures of organotin carboxylates, see: Tiekink (1991, 1994).



#### Experimental

#### Crystal data

 $\begin{bmatrix} \text{Sn}_2(C_7\text{H}_6\text{Cl})_4(\text{C}_9\text{H}_{16}\text{NO}_2\text{S}_2)_4 \end{bmatrix} & \gamma = 112.8168 \ (5)^\circ \\ W_r = 1677.04 & V = 1866.82 \ (4) \text{ Å}^3 \\ \text{Triclinic, } P\overline{1} & Z = 1 \\ a = 11.0257 \ (1) \text{ Å} & \text{Mo } K\alpha \text{ radiation} \\ b = 13.1588 \ (2) \text{ Å} & \mu = 1.09 \ \text{mm}^{-1} \\ c = 14.5369 \ (2) \text{ Å} & T = 100 \ \text{K} \\ \alpha = 96.4464 \ (5)^\circ & 0.25 \times 0.20 \times 0.15 \ \text{mm} \\ \beta = 101.0660 \ (5)^\circ \end{array}$ 

#### Data collection

Bruker SMART APEX diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996)  $T_{\rm min} = 0.773, T_{\rm max} = 0.854$ 

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.024$  $wR(F^2) = 0.083$ S = 0.938479 reflections 17479 measured reflections

1/479 measured reflections 8479 independent reflections 7912 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.014$ 

406 parameters H-atom parameters constrained  $\Delta \rho_{max} = 1.36 \text{ e } \text{\AA}^{-3}$  $\Delta \rho_{min} = -0.40 \text{ e } \text{\AA}^{-3}$ 

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We thank the University of Malaya (grant No. RG020/ 09AFR) for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5526).

#### References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Nachmias, G. (1952). Ann. Chim. 12, 584-631.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Sisido, K., Takeda, Y. & Kinugawa, Z. (1961). J. Am. Chem. Soc. 83, 538-541.

- Tiekink, E. R. T. (1991). *Appl. Organomet. Chem.* **5**, 1–23. Tiekink, E. R. T. (1994). *Trends Organomet. Chem.* **1**, 71–116.
- Heatrin S. B. (2010) L Appl. Crust 42, 020, 025
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2011). E67, m661 [doi:10.1107/S1600536811015716]

 $Bis\{\mathcal{H}-2-[(N,N-diisopropylcarbamothioyl)sulfanyl]acetato-\kappa^2 O: O'\} bis(bis(4-chlorobenzyl)\{2-[(N,N-diisopropylcarbamothioyl)sulfanyl]acetato-\kappa^2 O, O'\} tin(IV))$ 

#### T. C. Keng, K. M. Lo and S. W. Ng

#### Comment

Diorganotin dicarboxylates are generally six-coordinate compounds as the carboxyl  $-CO_2$  portion of the anion functions either in a chelating or in a bridging mode (Tiekink, 1991, 1994). The title compound (Scheme I) exists as a centrosymmetric dinuclear molecule in which the anion of one formula unit functions in a chelating mode whereas the other anion functions in a chelating mode (Fig. 1). In dinuclear  $[Sn(C_7H_6Cl)_2(C_9H_{16}NO_2S_2)_2]_2$ , the  $Sn^{IV}$  atom is chelated by one of the two carboxylate ions; the other carboxylate ion bridges two metal atoms. The geometry of the six-coordinate  $Sn^{IV}$  atom is a *trans*-C\_2SnO<sub>4</sub> octahedron [C–Sn–C 155.32 (8) °]. The chelation is not isobidentate.

#### **Experimental**

Di(4-chlorobenzyl)tin oxide was prepared by the base hydrolysis of di(4-chlorobenzyl)tin dichloride with 10% sodium hydroxide. The diorganotin dichloride was synthesized by the direct reaction of 4-chlorobenzyl chloride and metallic tin according to a literature procedure (Sisido *et al.*, 1961). The carboxylic acid was synthesized by using literature procedure (Nachmias, 1952). The diorganotin oxide (0.78 g, 2 mmol) and *N*,*N*-diisopropyldithiocarbamylacetic acid (0.94 g, 2 mmol) were heated in ethanol (100 ml) for an hour until the oxide dissolved. The solution was filtered; slow evaporation of the filtrate gave colorless crystals.

#### Refinement

H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 times  $U_{eq}(C)$ .

#### **Figures**



Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of  $[Sn(C_7H_6Cl)_2(C_9H_{16}NO_2S_2)_2]_2$  at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

# $Bis\{\mu-2-[(N,N-diisopropy|carbamothioy|)sulfany|]acetato-\kappa^2O:O'\}bis(bis(4-chlorobenzyl)\{2-[(N,N-diisopropy|carbamothioy|)sulfany|]acetato-\kappa^2O,O'\}tin(IV))$

#### Crystal data

| $[Sn_2(C_7H_6Cl)_4(C_9H_{16}NO_2S_4)_2]$ | Z = 1                                                 |
|------------------------------------------|-------------------------------------------------------|
| $M_r = 1677.04$                          | F(000) = 860                                          |
| Triclinic, <i>P</i> T                    | $D_{\rm x} = 1.492 {\rm Mg m}^{-3}$                   |
| Hall symbol: -P 1                        | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| a = 11.0257(1) Å                         | Cell parameters from 9894 reflections                 |
| b = 13.1588 (2) Å                        | $\theta = 2.5 - 28.4^{\circ}$                         |
| c = 14.5369 (2) Å                        | $\mu = 1.09 \text{ mm}^{-1}$                          |
| $\alpha = 96.4464 \ (5)^{\circ}$         | T = 100  K                                            |
| $\beta = 101.0660 \ (5)^{\circ}$         | Block, colorless                                      |
| $\gamma = 112.8168 \ (5)^{\circ}$        | $0.25\times0.20\times0.15~mm$                         |
| $V = 1866.82 (4) \text{ Å}^3$            |                                                       |

#### Data collection

| Bruker SMART APEX<br>diffractometer                            | 8479 independent reflections                                              |
|----------------------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube                       | 7912 reflections with $I > 2\sigma(I)$                                    |
| graphite                                                       | $R_{\rm int} = 0.014$                                                     |
| ω scans                                                        | $\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$ |
| Absorption correction: multi-scan<br>(SADABS; Sheldrick, 1996) | $h = -14 \rightarrow 14$                                                  |
| $T_{\min} = 0.773, T_{\max} = 0.854$                           | $k = -17 \rightarrow 16$                                                  |
| 17479 measured reflections                                     | $l = -18 \rightarrow 18$                                                  |

#### Refinement

| Refinement on $F^2$             | Primary atom site location: structure-invariant direct methods                                      |
|---------------------------------|-----------------------------------------------------------------------------------------------------|
| Least-squares matrix: full      | Secondary atom site location: difference Fourier map                                                |
| $R[F^2 > 2\sigma(F^2)] = 0.024$ | Hydrogen site location: inferred from neighbouring sites                                            |
| $wR(F^2) = 0.083$               | H-atom parameters constrained                                                                       |
| <i>S</i> = 0.93                 | $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0633P)^{2} + 1.4914P]$<br>where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ |
| 8479 reflections                | $(\Delta/\sigma)_{\rm max} = 0.001$                                                                 |
| 406 parameters                  | $\Delta \rho_{max} = 1.36 \text{ e } \text{\AA}^{-3}$                                               |
| 0 restraints                    | $\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$                                          |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

у

x

Z

 $U_{\rm iso}*/U_{\rm eq}$ 

| Sn1  | 0.406607 (11) | 0.336032 (10) | 0.363697 (8) | 0.01541 (5)  |
|------|---------------|---------------|--------------|--------------|
| Cl1  | 0.79909 (7)   | 0.41135 (6)   | 0.03727 (5)  | 0.04089 (15) |
| C12  | 0.49005 (7)   | 0.19243 (6)   | 0.83012 (4)  | 0.04131 (15) |
| S1   | 0.20626 (5)   | -0.00123 (4)  | 0.06705 (3)  | 0.02075 (10) |
| S2   | 0.28467 (6)   | -0.04328 (4)  | 0.26242 (4)  | 0.02568 (11) |
| S3   | 0.89452 (5)   | 0.59366 (4)   | 0.67643 (3)  | 0.01785 (10) |
| S4   | 0.96621 (5)   | 0.63196 (4)   | 0.49095 (3)  | 0.01809 (10) |
| 01   | 0.47770 (14)  | 0.23694 (12)  | 0.27828 (10) | 0.0198 (3)   |
| O2   | 0.27222 (14)  | 0.21691 (12)  | 0.20565 (10) | 0.0199 (3)   |
| 03   | 0.59477 (13)  | 0.37482 (11)  | 0.46061 (10) | 0.0181 (3)   |
| 04   | 0.64367 (13)  | 0.55367 (11)  | 0.52227 (10) | 0.0169 (3)   |
| N1   | 0.05428 (17)  | -0.17675 (14) | 0.12945 (12) | 0.0187 (3)   |
| N2   | 1.08837 (17)  | 0.78195 (14)  | 0.65749 (12) | 0.0200 (3)   |
| C1   | 0.4573 (2)    | 0.47745 (16)  | 0.29490 (14) | 0.0191 (4)   |
| H1A  | 0.3730        | 0.4786        | 0.2574       | 0.023*       |
| H1B  | 0.5066        | 0.5483        | 0.3438       | 0.023*       |
| C2   | 0.54474 (19)  | 0.46880 (16)  | 0.22990 (14) | 0.0184 (4)   |
| C3   | 0.4923 (2)    | 0.43674 (17)  | 0.13091 (15) | 0.0215 (4)   |
| Н3   | 0.4018        | 0.4264        | 0.1037       | 0.026*       |
| C4   | 0.5703 (2)    | 0.41951 (18)  | 0.07087 (15) | 0.0255 (4)   |
| H4   | 0.5337        | 0.3975        | 0.0034       | 0.031*       |
| C5   | 0.7014 (2)    | 0.43497 (18)  | 0.11127 (17) | 0.0264 (4)   |
| C6   | 0.7578 (2)    | 0.46882 (18)  | 0.20934 (16) | 0.0251 (4)   |
| H6   | 0.8489        | 0.4800        | 0.2360       | 0.030*       |
| C7   | 0.6792 (2)    | 0.48612 (17)  | 0.26803 (15) | 0.0214 (4)   |
| H7   | 0.7175        | 0.5101        | 0.3353       | 0.026*       |
| C8   | 0.27651 (19)  | 0.20341 (16)  | 0.41890 (14) | 0.0192 (4)   |
| H8A  | 0.1884        | 0.2090        | 0.4126       | 0.023*       |
| H8B  | 0.2584        | 0.1304        | 0.3791       | 0.023*       |
| C9   | 0.33225 (19)  | 0.20376 (15)  | 0.52141 (14) | 0.0177 (4)   |
| C10  | 0.4326 (2)    | 0.16432 (18)  | 0.54665 (16) | 0.0232 (4)   |
| H10  | 0.4674        | 0.1392        | 0.4982       | 0.028*       |
| C11  | 0.4821 (2)    | 0.16130 (19)  | 0.64091 (17) | 0.0272 (4)   |
| H11  | 0.5506        | 0.1348        | 0.6572       | 0.033*       |
| C12  | 0.4302 (2)    | 0.19759 (18)  | 0.71133 (16) | 0.0258 (4)   |
| C13  | 0.3319 (2)    | 0.23779 (17)  | 0.68898 (15) | 0.0232 (4)   |
| H13  | 0.2976        | 0.2629        | 0.7377       | 0.028*       |
| C14  | 0.2840 (2)    | 0.24098 (16)  | 0.59425 (15) | 0.0207 (4)   |
| H14  | 0.2169        | 0.2691        | 0.5787       | 0.025*       |
| C15  | 0.37035 (19)  | 0.19069 (16)  | 0.20849 (14) | 0.0185 (4)   |
| C16  | 0.3714 (2)    | 0.10820 (17)  | 0.12758 (15) | 0.0215 (4)   |
| H16A | 0.4317        | 0.0730        | 0.1536       | 0.026*       |
| H16B | 0.4107        | 0.1503        | 0.0803       | 0.026*       |
| C17  | 0.1718 (2)    | -0.08442 (16) | 0.15656 (14) | 0.0188 (4)   |
| C18  | 0.0199 (2)    | -0.26663 (17) | 0.18707 (15) | 0.0218 (4)   |
| H18  | -0.0696       | -0.3276       | 0.1491       | 0.026*       |
| C19  | 0.1204 (2)    | -0.32062 (19) | 0.19771 (17) | 0.0281 (4)   |
| H19A | 0.1313        | -0.3439       | 0.1345       | 0.042*       |
| H19B | 0.0858        | -0.3866       | 0.2264       | 0.042*       |

| H19C | 0.2086       | -0.2660       | 0.2390        | 0.042*     |
|------|--------------|---------------|---------------|------------|
| C20  | -0.0031 (3)  | -0.2275 (2)   | 0.28203 (17)  | 0.0324 (5) |
| H20A | -0.0682      | -0.1936       | 0.2708        | 0.049*     |
| H20B | 0.0835       | -0.1715       | 0.3244        | 0.049*     |
| H20C | -0.0394      | -0.2921       | 0.3121        | 0.049*     |
| C21  | -0.0494 (2)  | -0.19933 (17) | 0.03826 (14)  | 0.0213 (4) |
| H21  | -0.0217      | -0.1286       | 0.0126        | 0.026*     |
| C22  | -0.0516 (2)  | -0.2910 (2)   | -0.03654 (15) | 0.0281 (4) |
| H22A | 0.0401       | -0.2707       | -0.0456       | 0.042*     |
| H22B | -0.1144      | -0.2988       | -0.0973       | 0.042*     |
| H22C | -0.0820      | -0.3626       | -0.0149       | 0.042*     |
| C23  | -0.1897 (2)  | -0.22522 (19) | 0.05571 (16)  | 0.0263 (4) |
| H23A | -0.1834      | -0.1640       | 0.1041        | 0.039*     |
| H23B | -0.2219      | -0.2960       | 0.0784        | 0.039*     |
| H23C | -0.2537      | -0.2323       | -0.0042       | 0.039*     |
| C24  | 0.66742 (17) | 0.46904 (15)  | 0.52041 (12)  | 0.0144 (3) |
| C25  | 0.78688 (18) | 0.46587 (15)  | 0.58999 (14)  | 0.0176 (3) |
| H25A | 0.8435       | 0.4459        | 0.5526        | 0.021*     |
| H25B | 0.7510       | 0.4049        | 0.6249        | 0.021*     |
| C26  | 0.99540 (18) | 0.68054 (16)  | 0.60723 (14)  | 0.0167 (3) |
| C27  | 1.1767 (2)   | 0.87019 (16)  | 0.61264 (15)  | 0.0209 (4) |
| H27  | 1.2361       | 0.9355        | 0.6667        | 0.025*     |
| C28  | 1.0951 (2)   | 0.91474 (17)  | 0.54522 (16)  | 0.0237 (4) |
| H28A | 1.0353       | 0.9356        | 0.5775        | 0.036*     |
| H28B | 1.0400       | 0.8562        | 0.4876        | 0.036*     |
| H28C | 1.1575       | 0.9811        | 0.5271        | 0.036*     |
| C29  | 1.2744 (2)   | 0.83578 (19)  | 0.56923 (18)  | 0.0282 (5) |
| H29A | 1.3235       | 0.8079        | 0.6162        | 0.042*     |
| H29B | 1.3397       | 0.9012        | 0.5519        | 0.042*     |
| H29C | 1.2226       | 0.7762        | 0.5118        | 0.042*     |
| C30  | 1.1115 (2)   | 0.81703 (18)  | 0.76301 (15)  | 0.0267 (4) |
| H30  | 1.0487       | 0.7518        | 0.7848        | 0.032*     |
| C31  | 1.0746 (2)   | 0.9154 (2)    | 0.78689 (17)  | 0.0342 (5) |
| H31A | 0.9812       | 0.8960        | 0.7509        | 0.051*     |
| H31B | 1.1373       | 0.9821        | 0.7694        | 0.051*     |
| H31C | 1.0818       | 0.9312        | 0.8557        | 0.051*     |
| C32  | 1.2568 (3)   | 0.8413 (2)    | 0.81602 (17)  | 0.0349 (5) |
| H32A | 1.2698       | 0.8646        | 0.8849        | 0.052*     |
| H32B | 1.3215       | 0.9018        | 0.7933        | 0.052*     |
| H32C | 1.2723       | 0.7732        | 0.8038        | 0.052*     |
|      |              |               |               |            |

### Atomic displacement parameters $(Å^2)$

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| Sn1 | 0.01341 (8) | 0.01605 (8) | 0.01545 (8) | 0.00530 (5)  | 0.00327 (5)  | 0.00229 (5)  |
| Cl1 | 0.0447 (3)  | 0.0428 (3)  | 0.0452 (4)  | 0.0206 (3)   | 0.0307 (3)   | 0.0069 (3)   |
| Cl2 | 0.0425 (3)  | 0.0562 (4)  | 0.0249 (3)  | 0.0218 (3)   | 0.0028 (2)   | 0.0132 (3)   |
| S1  | 0.0221 (2)  | 0.0181 (2)  | 0.0158 (2)  | 0.00386 (18) | 0.00156 (18) | 0.00244 (17) |

| S2             | 0.0279 (3)    | 0.0224 (2)  | 0.0224 (2)  | 0.0108 (2)   | -0.0030 (2)  | 0.00348 (19) |
|----------------|---------------|-------------|-------------|--------------|--------------|--------------|
| S3             | 0.0161 (2)    | 0.0179 (2)  | 0.0152 (2)  | 0.00339 (17) | 0.00239 (16) | 0.00325 (17) |
| S4             | 0.0186 (2)    | 0.0196 (2)  | 0.0171 (2)  | 0.00896 (18) | 0.00526 (17) | 0.00303 (17) |
| 01             | 0.0156 (6)    | 0.0191 (6)  | 0.0208 (7)  | 0.0053 (5)   | 0.0023 (5)   | 0.0001 (5)   |
| O2             | 0.0169 (6)    | 0.0217 (7)  | 0.0207 (7)  | 0.0088 (5)   | 0.0036 (5)   | 0.0029 (5)   |
| O3             | 0.0155 (6)    | 0.0164 (6)  | 0.0192 (6)  | 0.0057 (5)   | 0.0015 (5)   | 0.0002 (5)   |
| O4             | 0.0149 (6)    | 0.0175 (6)  | 0.0202 (7)  | 0.0082 (5)   | 0.0055 (5)   | 0.0039 (5)   |
| N1             | 0.0189 (8)    | 0.0218 (8)  | 0.0157 (8)  | 0.0091 (6)   | 0.0025 (6)   | 0.0056 (6)   |
| N2             | 0.0182 (8)    | 0.0181 (8)  | 0.0202 (8)  | 0.0044 (6)   | 0.0048 (6)   | 0.0029 (6)   |
| C1             | 0.0186 (9)    | 0.0193 (9)  | 0.0204 (9)  | 0.0079 (7)   | 0.0071 (7)   | 0.0046 (7)   |
| C2             | 0.0183 (9)    | 0.0172 (8)  | 0.0191 (9)  | 0.0059 (7)   | 0.0064 (7)   | 0.0036 (7)   |
| C3             | 0.0220 (9)    | 0.0228 (9)  | 0.0197 (9)  | 0.0091 (8)   | 0.0054 (8)   | 0.0049 (7)   |
| C4             | 0.0332 (11)   | 0.0258 (10) | 0.0185 (9)  | 0.0119 (9)   | 0.0103 (8)   | 0.0038 (8)   |
| C5             | 0.0305 (11)   | 0.0235 (10) | 0.0299 (11) | 0.0108 (8)   | 0.0179 (9)   | 0.0071 (8)   |
| C6             | 0.0194 (9)    | 0.0248 (10) | 0.0319 (11) | 0.0081 (8)   | 0.0098 (8)   | 0.0078 (8)   |
| C7             | 0.0186 (9)    | 0.0222 (9)  | 0.0213 (9)  | 0.0058 (7)   | 0.0058 (7)   | 0.0055 (8)   |
| C8             | 0.0152 (8)    | 0.0182 (9)  | 0.0219 (9)  | 0.0055 (7)   | 0.0039 (7)   | 0.0021 (7)   |
| С9             | 0.0140 (8)    | 0.0150 (8)  | 0.0234 (9)  | 0.0048 (7)   | 0.0059 (7)   | 0.0045 (7)   |
| C10            | 0.0207 (9)    | 0.0244 (10) | 0.0278 (10) | 0.0117 (8)   | 0.0086 (8)   | 0.0055 (8)   |
| C11            | 0.0212 (10)   | 0.0318 (11) | 0.0322 (11) | 0.0145 (9)   | 0.0053 (8)   | 0.0105 (9)   |
| C12            | 0.0236 (10)   | 0.0268 (10) | 0.0234 (10) | 0.0069 (8)   | 0.0034 (8)   | 0.0089 (8)   |
| C13            | 0.0229 (9)    | 0.0225 (9)  | 0.0230 (10) | 0.0073 (8)   | 0.0082 (8)   | 0.0043 (8)   |
| C14            | 0.0196 (9)    | 0.0184 (9)  | 0.0258 (10) | 0.0081 (7)   | 0.0086 (8)   | 0.0057 (8)   |
| C15            | 0.0172 (8)    | 0.0184 (8)  | 0.0185 (9)  | 0.0061 (7)   | 0.0049 (7)   | 0.0032 (7)   |
| C16            | 0.0183 (9)    | 0.0209 (9)  | 0.0205 (9)  | 0.0057 (7)   | 0.0033 (7)   | -0.0014 (7)  |
| C17            | 0.0204 (9)    | 0.0198 (9)  | 0.0180 (9)  | 0.0109 (7)   | 0.0037 (7)   | 0.0033 (7)   |
| C18            | 0.0214 (9)    | 0.0240 (9)  | 0.0200 (9)  | 0.0078 (8)   | 0.0060 (7)   | 0.0098 (8)   |
| C19            | 0.0294 (11)   | 0.0255 (10) | 0.0333 (12) | 0.0135 (9)   | 0.0086 (9)   | 0.0130 (9)   |
| C20            | 0.0350 (12)   | 0.0403 (13) | 0.0239 (11) | 0.0147 (10)  | 0.0132 (9)   | 0.0086 (10)  |
| C21            | 0.0197 (9)    | 0.0239 (9)  | 0.0165 (9)  | 0.0075 (8)   | -0.0003 (7)  | 0.0049 (7)   |
| C22            | 0.0313 (11)   | 0.0325 (11) | 0.0186 (10) | 0.0131 (9)   | 0.0043 (8)   | 0.0018 (8)   |
| C23            | 0.0192 (9)    | 0.0289 (10) | 0.0283 (11) | 0.0096 (8)   | 0.0022 (8)   | 0.0048 (9)   |
| C24            | 0.0112 (7)    | 0.0167 (8)  | 0.0145 (8)  | 0.0039 (6)   | 0.0052 (6)   | 0.0032 (7)   |
| C25            | 0.0144 (8)    | 0.0145 (8)  | 0.0198 (9)  | 0.0037 (7)   | 0.0010 (7)   | 0.0021 (7)   |
| C26            | 0.0141 (8)    | 0.0184 (8)  | 0.0194 (9)  | 0.0084 (7)   | 0.0044 (7)   | 0.0051 (7)   |
| C27            | 0.0182 (9)    | 0.0179 (9)  | 0.0263 (10) | 0.0056 (7)   | 0.0083 (8)   | 0.0059 (8)   |
| C28            | 0.0235 (10)   | 0.0179 (9)  | 0.0310 (11) | 0.0076 (8)   | 0.0101 (8)   | 0.0086 (8)   |
| C29            | 0.0215 (10)   | 0.0270 (10) | 0.0415 (13) | 0.0123 (8)   | 0.0145 (9)   | 0.0093 (9)   |
| C30            | 0.0259 (10)   | 0.0228 (10) | 0.0185 (10) | -0.0003 (8)  | 0.0026 (8)   | -0.0011 (8)  |
| C31            | 0.0273 (11)   | 0.0430 (13) | 0.0238 (11) | 0.0110 (10)  | 0.0035 (9)   | -0.0072 (10) |
| C32            | 0.0375 (13)   | 0.0333 (12) | 0.0269 (11) | 0.0144 (10)  | -0.0040 (10) | 0.0021 (9)   |
|                |               |             |             |              |              |              |
| Geometric para | neters (Å, °) |             |             |              |              |              |
| Sn1_03         |               | 2 1083 (13) | C12 C       | 13           | 1 2 2 1      | (3)          |

| Sn1-03              | 2.1083 (13) | C12—C13 | 1.381 (3) |
|---------------------|-------------|---------|-----------|
| Sn1—C8              | 2.136 (2)   | C13—C14 | 1.389 (3) |
| Sn1—C1              | 2.1451 (19) | С13—Н13 | 0.9500    |
| Sn1—O1              | 2.1585 (14) | C14—H14 | 0.9500    |
| Sn1—O4 <sup>i</sup> | 2.3661 (13) | C15—C16 | 1.514 (3) |

| Sn1—O2            | 2.4524 (14)             | C16—H16A            | 0.9900      |
|-------------------|-------------------------|---------------------|-------------|
| Cl1—C5            | 1.744 (2)               | C16—H16B            | 0.9900      |
| Cl2—C12           | 1.745 (2)               | C18—C20             | 1.520 (3)   |
| S1—C17            | 1.795 (2)               | C18—C19             | 1.525 (3)   |
| S1—C16            | 1.798 (2)               | C18—H18             | 1.0000      |
| S2—C17            | 1.663 (2)               | C19—H19A            | 0.9800      |
| S3—C25            | 1.7945 (19)             | С19—Н19В            | 0.9800      |
| S3—C26            | 1.805 (2)               | C19—H19C            | 0.9800      |
| S4—C26            | 1.6609 (19)             | C20—H20A            | 0.9800      |
| O1—C15            | 1.282 (2)               | С20—Н20В            | 0.9800      |
| O2—C15            | 1.252 (2)               | С20—Н20С            | 0.9800      |
| O3—C24            | 1 286 (2)               | C21—C22             | 1 520 (3)   |
| 04-024            | 1 238 (2)               | $C_{21} - C_{23}$   | 1.528 (3)   |
| 01 $021$          | 2 3661 (13)             | C21—H21             | 1.0000      |
| 04—Sh1            | 2.5001 (15)             |                     | 0.0000      |
| NI-CI/            | 1.336 (3)               | C22—H22A            | 0.9800      |
| NI—C2I            | 1.489 (2)               | C22—H22B            | 0.9800      |
| NI—C18            | 1.497 (2)               | C22—H22C            | 0.9800      |
| N2—C26            | 1.341 (2)               | С23—Н23А            | 0.9800      |
| N2—C30            | 1.494 (3)               | С23—Н23В            | 0.9800      |
| N2—C27            | 1.503 (2)               | С23—Н23С            | 0.9800      |
| C1—C2             | 1.499 (3)               | C24—C25             | 1.517 (2)   |
| C1—H1A            | 0.9900                  | С25—Н25А            | 0.9900      |
| C1—H1B            | 0.9900                  | C25—H25B            | 0.9900      |
| C2—C3             | 1.392 (3)               | C27—C28             | 1.521 (3)   |
| C2—C7             | 1.397 (3)               | C27—C29             | 1.529 (3)   |
| C3—C4             | 1.396 (3)               | C27—H27             | 1.0000      |
| С3—Н3             | 0.9500                  | C28—H28A            | 0.9800      |
| C4—C5             | 1.377 (3)               | C28—H28B            | 0.9800      |
| C4—H4             | 0.9500                  | C28—H28C            | 0.9800      |
| C5—C6             | 1.386 (3)               | С29—Н29А            | 0.9800      |
| C6—C7             | 1.387 (3)               | С29—Н29В            | 0.9800      |
| С6—Н6             | 0.9500                  | С29—Н29С            | 0.9800      |
| С7—Н7             | 0.9500                  | C30—C31             | 1.523 (3)   |
| C8—C9             | 1.498 (3)               | C30—C32             | 1.529 (3)   |
| С8—Н8А            | 0.9900                  | С30—Н30             | 1.0000      |
| C8—H8B            | 0.9900                  | C31—H31A            | 0.9800      |
| C9—C14            | 1.395 (3)               | C31—H31B            | 0.9800      |
| C9—C10            | 1.400 (3)               | C31—H31C            | 0.9800      |
| C10—C11           | 1.385 (3)               | С32—Н32А            | 0.9800      |
| С10—Н10           | 0.9500                  | C32—H32B            | 0 9800      |
| $C_{11}$ $C_{12}$ | 1 389 (3)               | C32—H32C            | 0.9800      |
| C11_H11           | 0.9500                  | 052 11520           | 0.9000      |
|                   | 0.5500                  | S2 C17 S1           | 110 10 (12) |
| 03-5n1-08         | 99.59 (0)<br>101.45 (C) | $S_2 - C_1 / - S_1$ | 119.19 (12) |
| $U_3$ —Sn1—C1     | 101.45 (6)              | NI-C18-C20          | 112.71 (18) |
| C8—Sn1—C1         | 155.32 (8)              | NI-C18-C19          | 112.50 (16) |
| O3—Snl—Ol         | 81.59 (5)               | C20—C18—C19         | 113.09 (18) |
| C8—Sn1—O1         | 97.84 (7)               | N1—C18—H18          | 105.9       |
| C1—Sn1—O1         | 97.86 (6)               | C20—C18—H18         | 105.9       |

| O3—Sn1—O4 <sup>i</sup>                  | 89.62 (5)                | C19—C18—H18                                             | 105.9                    |
|-----------------------------------------|--------------------------|---------------------------------------------------------|--------------------------|
| C8—Sn1—O4 <sup>i</sup>                  | 81.34 (6)                | C18—C19—H19A                                            | 109.5                    |
| C1—Sn1—O4 <sup>i</sup>                  | 86.03 (6)                | C18—C19—H19B                                            | 109.5                    |
| O1—Sn1—O4 <sup>i</sup>                  | 170.93 (5)               | H19A—C19—H19B                                           | 109.5                    |
| O3—Sn1—O2                               | 138.32 (5)               | C18—C19—H19C                                            | 109.5                    |
| C8—Sn1—O2                               | 85.30 (6)                | H19A—C19—H19C                                           | 109.5                    |
| C1— $Sn1$ — $O2$                        | 87.52 (6)                | H19B—C19—H19C                                           | 109.5                    |
| O1—Sn1—O2                               | 56.78 (5)                | C18—C20—H20A                                            | 109.5                    |
| $\Omega^{4i}$ —Sn1— $\Omega^{2}$        | 131.86 (5)               | C18—C20—H20B                                            | 109.5                    |
| C17 - S1 - C16                          | 101 28 (10)              | H20A—C20—H20B                                           | 109 5                    |
| $C_{25} = 8_{3} = C_{26}$               | 102.78 (9)               | $C_{18} = C_{20} = H_{20}C_{20}$                        | 109.5                    |
| $C_{15} = 01 = S_{11}$                  | 97 25 (12)               | $H_{20A} - C_{20} - H_{20C}$                            | 109.5                    |
| C15 - O2 - Sn1                          | 84 57 (11)               | $H_{20}B_{$                                             | 109.5                    |
| $C_{24} = 0_{3} = S_{n1}$               | 124 97 (12)              | N1-C21-C22                                              | 111 51 (17)              |
| $C_{24} = O_4 = S_{rel}^{-1}$           | 121.97(12)<br>134.92(12) | N1-C21-C23                                              | 111.31(17)<br>111.22(17) |
| C17 N1 C21                              | 134.92(12)               | $C_{22}^{-1} = C_{23}^{-1}$                             | 111.22(17)               |
| C17 - N1 - C21                          | 122.40 (16)              | C22-C21-C23                                             | 112.33 (18)              |
| C1/-N1-C18                              | 122.23 (10)              | NI = C2I = H2I                                          | 107.2                    |
| $C_2I = NI = C_{18}$                    | 115.54 (10)              | C22—C21—H21                                             | 107.2                    |
| $C_{26} = N_{2} = C_{30}$               | 122.54 (17)              | C23—C21—H21                                             | 107.2                    |
| C26—N2—C27                              | 123.08 (17)              | C21—C22—H22A                                            | 109.5                    |
| $C_{30} = N_2 = C_2 / C_2$              | 114.38 (16)              | C21—C22—H22B                                            | 109.5                    |
| $C_2 = C_1 = S_{n1}$                    | 109.47 (13)              | H22A - C22 - H22B                                       | 109.5                    |
|                                         | 109.8                    | C21—C22—H22C                                            | 109.5                    |
| SnI—CI—HIA                              | 109.8                    | H22A-C22-H22C                                           | 109.5                    |
| C2-CI-HIB                               | 109.8                    | H22B - C22 - H22C                                       | 109.5                    |
|                                         | 109.8                    | C21—C23—H23A                                            | 109.5                    |
| $\Pi A = C I = \Pi I B$                 | 108.2                    | $C_{21} - C_{23} - \Pi_{23} D$                          | 109.5                    |
| $C_{3} = C_{2} = C_{1}$                 | 118.54 (18)              | $H_{23}A - C_{23} - H_{23}B$                            | 109.5                    |
| $C_{3} = C_{2} = C_{1}$                 | 121.19 (18)              | C21—C23—H23C                                            | 109.5                    |
| $C_{1} = C_{2} = C_{1}$                 | 120.35 (18)              | $H_{23}A - C_{23} - H_{23}C$                            | 109.5                    |
| $C_2 = C_3 = C_4$                       | 121.21 (19)              | $H_{23}B = C_{23} = H_{23}C$                            | 109.5                    |
| C2-C3-H3                                | 119.4                    | 04 - 024 - 03                                           | 124.49 (17)              |
| C4—C3—H3                                | 119.4                    | 04-024-025                                              | 122.89 (16)              |
| $C_{5}$                                 | 118.7 (2)                | 03 - 024 - 025                                          | 112.62 (15)              |
| C5—C4—H4                                | 120.6                    | C24—C25—S3                                              | 115.96 (13)              |
| C3—C4—H4                                | 120.6                    | C24—C25—H25A                                            | 108.3                    |
| C4 - C5 - C6                            | 121.64 (19)              | S3—C25—H25A                                             | 108.3                    |
| C4—C5—C11                               | 119.24 (18)              | C24—C25—H25B                                            | 108.3                    |
|                                         | 119.12 (17)              | S3-C25-H25B                                             | 108.3                    |
| $C_{2} = C_{2} = C_{1}$                 | 118.9 (2)                | H25A-C25-H25B                                           | 107.4                    |
| $C_{2} = C_{0} = H_{0}$                 | 120.5                    | N2 C26 S2                                               | 120.13 (13)              |
| $C_1 - C_0 - \Pi_0$                     | 120.3                    | 112 - 0.20 - 53                                         | 114.39 (14)              |
| C = C = C = C = C = C = C = C = C = C = | 121.11 (19)              | 54 - C20 - 53                                           | 119.44 (11)              |
| $C_{2} = C_{7} = U_{7}$                 | 119.4                    | N2 = C27 = C20                                          | 112.33 (10)              |
| $C_2 - C_1 - H_1$                       | 119.4                    | N2 - C27 - C29                                          | 113.0/(10)               |
| $C_{2} = C_{2} = C_{2}$                 | 114.00 (15)              | 120 - 121 - 127                                         | 113.03 (18)              |
|                                         | 100.0                    | $\frac{1}{2} - \frac{1}{2} - \frac{1}{2} = \frac{1}{2}$ | 105.4                    |
| Sn1—C8—H8A                              | 108.6                    | C28—C27—H27                                             | 105.4                    |

| С9—С8—Н8В                         | 108.6        | С29—С27—Н27              | 105.4        |
|-----------------------------------|--------------|--------------------------|--------------|
| Sn1—C8—H8B                        | 108.6        | C27—C28—H28A             | 109.5        |
| H8A—C8—H8B                        | 107.6        | C27—C28—H28B             | 109.5        |
| C14—C9—C10                        | 118.02 (19)  | H28A—C28—H28B            | 109.5        |
| C14—C9—C8                         | 121.19 (17)  | C27—C28—H28C             | 109.5        |
| C10—C9—C8                         | 120.77 (18)  | H28A—C28—H28C            | 109.5        |
| C11—C10—C9                        | 121.24 (19)  | H28B—C28—H28C            | 109.5        |
| C11-C10-H10                       | 119.4        | С27—С29—Н29А             | 109.5        |
| C9—C10—H10                        | 119.4        | С27—С29—Н29В             | 109.5        |
| C10-C11-C12                       | 119.10 (19)  | H29A—C29—H29B            | 109.5        |
| C10-C11-H11                       | 120.5        | С27—С29—Н29С             | 109.5        |
| C12—C11—H11                       | 120.5        | H29A—C29—H29C            | 109.5        |
| C13—C12—C11                       | 121.1 (2)    | H29B—C29—H29C            | 109.5        |
| C13—C12—Cl2                       | 119.33 (17)  | N2-C30-C31               | 111.48 (18)  |
| C11—C12—Cl2                       | 119.54 (17)  | N2-C30-C32               | 110.90 (19)  |
| C12-C13-C14                       | 119.1 (2)    | C31—C30—C32              | 112.58 (19)  |
| C12—C13—H13                       | 120.5        | N2—C30—H30               | 107.2        |
| C14—C13—H13                       | 120.5        | С31—С30—Н30              | 107.2        |
| C13—C14—C9                        | 121.42 (19)  | С32—С30—Н30              | 107.2        |
| C13—C14—H14                       | 119.3        | С30—С31—Н31А             | 109.5        |
| C9—C14—H14                        | 119.3        | C30—C31—H31B             | 109.5        |
| O2-C15-O1                         | 121.24 (18)  | H31A—C31—H31B            | 109.5        |
| O2-C15-C16                        | 121.85 (17)  | C30—C31—H31C             | 109.5        |
| O1—C15—C16                        | 116.83 (17)  | H31A—C31—H31C            | 109.5        |
| C15—C16—S1                        | 114.07 (14)  | H31B—C31—H31C            | 109.5        |
| C15—C16—H16A                      | 108.7        | C30—C32—H32A             | 109.5        |
| S1—C16—H16A                       | 108.7        | C30—C32—H32B             | 109.5        |
| C15—C16—H16B                      | 108.7        | H32A—C32—H32B            | 109.5        |
| S1—C16—H16B                       | 108.7        | С30—С32—Н32С             | 109.5        |
| H16A—C16—H16B                     | 107.6        | H32A—C32—H32C            | 109.5        |
| N1—C17—S2                         | 126.05 (15)  | H32B—C32—H32C            | 109.5        |
| N1—C17—S1                         | 114.75 (14)  |                          |              |
| O3—Sn1—O1—C15                     | 175.44 (12)  | C12—C13—C14—C9           | 0.5 (3)      |
| C8—Sn1—O1—C15                     | 76.84 (12)   | C10-C9-C14-C13           | -0.9 (3)     |
| C1—Sn1—O1—C15                     | -84.06 (12)  | C8—C9—C14—C13            | 177.72 (18)  |
| O2—Sn1—O1—C15                     | -2.27 (11)   | Sn1—O2—C15—O1            | -3.81 (18)   |
| O3—Sn1—O2—C15                     | -1.10 (14)   | Sn1—O2—C15—C16           | 179.68 (18)  |
| C8—Sn1—O2—C15                     | -100.24 (12) | Sn1—O1—C15—O2            | 4.3 (2)      |
| C1—Sn1—O2—C15                     | 103.39 (12)  | Sn1—O1—C15—C16           | -178.97 (14) |
| O1—Sn1—O2—C15                     | 2.31 (11)    | O2-C15-C16-S1            | -33.0 (2)    |
| $O4^{i}$ —Sn1—O2—C15              | -174.20 (10) | O1-C15-C16-S1            | 150.36 (15)  |
| C8—Sn1—O3—C24                     | -115.23 (15) | C17—S1—C16—C15           | -70.97 (16)  |
| C1—Sn1—O3—C24                     | 51.79 (15)   | C21—N1—C17—S2            | 171.63 (15)  |
| Q1—Sn1—Q3—C24                     | 148.18 (15)  | C18—N1—C17—S2            | -10.5(3)     |
| $O4^{i}$ Sp1 O3 C24               | -34.08(14)   | C21—N1—C17—S1            | -91(2)       |
| $0^{2}$ $8n^{1}$ $0^{3}$ $C^{24}$ | 151.06(13)   | $C_{18}$ N1- $C_{17}$ S1 | 168 77 (14)  |
| 03 = Sn1 = C1 = C2                | 71 86 (14)   | C16 - S1 - C17 - N1      | -177.62(15)  |
| C8 = Sn1 = C1 = C2                | -140 16 (17) | C16 S1 - C17 - S2        | 1.75(14)     |
| $0 \ 5 11 - 0 - 02$               | 170.10(17)   | -51 - 51 - 51 - 52       | 1.75(14)     |

| O1—Sn1—C1—C2                                                     | -11.10 (14)  | C17—N1—C18—C20               | 68.3 (2)     |
|------------------------------------------------------------------|--------------|------------------------------|--------------|
| O4 <sup>i</sup> —Sn1—C1—C2                                       | 160.66 (13)  | C21—N1—C18—C20               | -113.7 (2)   |
| O2—Sn1—C1—C2                                                     | -67.08 (13)  | C17—N1—C18—C19               | -61.0(2)     |
| Sn1—C1—C2—C3                                                     | 104.94 (18)  | C21—N1—C18—C19               | 116.98 (19)  |
| Sn1—C1—C2—C7                                                     | -71.1 (2)    | C17—N1—C21—C22               | 105.8 (2)    |
| C7—C2—C3—C4                                                      | 1.5 (3)      | C18—N1—C21—C22               | -72.1 (2)    |
| C1—C2—C3—C4                                                      | -174.57 (19) | C17—N1—C21—C23               | -127.9 (2)   |
| C2—C3—C4—C5                                                      | -0.1 (3)     | C18—N1—C21—C23               | 54.1 (2)     |
| C3—C4—C5—C6                                                      | -1.1 (3)     | Sn1 <sup>i</sup> —O4—C24—O3  | 118.97 (18)  |
| C3—C4—C5—Cl1                                                     | 178.89 (16)  | Sn1 <sup>i</sup> —O4—C24—C25 | -60.7 (2)    |
| C4—C5—C6—C7                                                      | 0.8 (3)      | Sn1—O3—C24—O4                | -7.9 (3)     |
| Cl1—C5—C6—C7                                                     | -179.18 (16) | Sn1—O3—C24—C25               | 171.81 (11)  |
| C5—C6—C7—C2                                                      | 0.7 (3)      | O4—C24—C25—S3                | -0.3 (2)     |
| C3—C2—C7—C6                                                      | -1.8 (3)     | O3—C24—C25—S3                | 179.99 (13)  |
| C1—C2—C7—C6                                                      | 174.30 (18)  | C26—S3—C25—C24               | -77.30 (15)  |
| O3—Sn1—C8—C9                                                     | 22.00 (14)   | C30—N2—C26—S4                | -177.53 (15) |
| C1—Sn1—C8—C9                                                     | -126.20 (18) | C27—N2—C26—S4                | 3.2 (3)      |
| O1—Sn1—C8—C9                                                     | 104.73 (14)  | C30—N2—C26—S3                | 3.3 (2)      |
| O4 <sup>i</sup> —Sn1—C8—C9                                       | -66.14 (13)  | C27—N2—C26—S3                | -175.90 (14) |
| O2—Sn1—C8—C9                                                     | 160.25 (14)  | C25—S3—C26—N2                | -178.38 (14) |
| Sn1—C8—C9—C14                                                    | 104.11 (18)  | C25—S3—C26—S4                | 2.42 (13)    |
| Sn1—C8—C9—C10                                                    | -77.3 (2)    | C26—N2—C27—C28               | 66.6 (2)     |
| C14—C9—C10—C11                                                   | 0.5 (3)      | C30—N2—C27—C28               | -112.7 (2)   |
| C8—C9—C10—C11                                                    | -178.15 (19) | C26—N2—C27—C29               | -64.3 (2)    |
| C9—C10—C11—C12                                                   | 0.4 (3)      | C30—N2—C27—C29               | 116.4 (2)    |
| C10-C11-C12-C13                                                  | -0.9 (3)     | C26—N2—C30—C31               | -115.4 (2)   |
| C10-C11-C12-Cl2                                                  | 179.14 (17)  | C27—N2—C30—C31               | 63.9 (2)     |
| C11—C12—C13—C14                                                  | 0.5 (3)      | C26—N2—C30—C32               | 118.3 (2)    |
| Cl2—C12—C13—C14                                                  | -179.55 (16) | C27—N2—C30—C32               | -62.4 (2)    |
| Symmetry codes: (i) – <i>x</i> +1, – <i>y</i> +1, – <i>z</i> +1. |              |                              |              |



Fig. 1